Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level.

نویسندگان

  • Alip Borthakur
  • Ravinder K Gill
  • Kim Hodges
  • Krishnamurthy Ramaswamy
  • Gail Hecht
  • Pradeep K Dudeja
چکیده

Enteropathogenic Escherichia coli (EPEC), a food-borne human pathogen, is responsible for infantile diarrhea, especially in developing countries. The pathophysiology of EPEC-induced diarrhea, however, is not completely understood. Our recent studies showed modulation of Na+/H+ and Cl-/HCO3- exchange activities in Caco-2 cells in response to EPEC infection. We hypothesized that intestinal short-chain fatty acid absorption mediated by monocarboxylate transporter 1 (MCT1) might also be altered by EPEC infection. The aim of the current studies was to examine the effect of EPEC infection on butyrate uptake. Caco-2 cells were infected with wild-type EPEC, various mutant strains, or nonpathogenic E. coli HS4, and [14C]butyrate uptake was determined. EPEC, but not nonpathogenic E. coli, significantly decreased butyrate uptake. Infection of cells with strains harboring mutations in escN, which encodes a putative ATPase for the EPEC type III secretion system (TTSS), or in the espA, espB, or espD genes encoding structural components of the TTSS, had no effect on butyrate uptake, indicating the TTSS dependence. On the other hand, strains with mutations in the effector protein genes espF, espG, espH, and map inhibited butyrate uptake, similar to the wild-type EPEC. Surface expression of MCT1 decreased considerably after EPEC but not after nonpathogenic E. coli infection. In conclusion, our studies demonstrate inhibition of MCT1-mediated butyrate uptake in Caco-2 cells in response to EPEC infection. This inhibition was dependent on a functional TTSS and the structural proteins EspA, -B, and -D of the translocation apparatus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells.

Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorpt...

متن کامل

Mechanisms underlying modulation of monocarboxylate transporter 1 (MCT1) by somatostatin in human intestinal epithelial cells.

Somatostatin (SST), an important neuropeptide of the gastrointestinal tract has been shown to stimulate sodium chloride absorption and inhibit chloride secretion in the intestine. However, the effects of SST on luminal butyrate absorption in the human intestine have not been investigated. Earlier studies from our group and others have shown that monocarboxylate transporter (MCT1) plays an impor...

متن کامل

Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection.

BACKGROUND AND AIMS The pathophysiology of enteropathogenic Escherichia coli (EPEC) diarrhoea remains uncertain. EPEC adhere to enterocytes and transduce signals which produce a characteristic "attaching and effacing" (A/E) lesion in the brush border membrane. The present in vitro study was designed to determine whether signal transduction by EPEC also influences electrolyte transport. METHOD...

متن کامل

Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1.

The short-chain fatty acid butyrate was readily taken up by Caco-2 cells. Transport exhibited saturation kinetics, was enhanced by low extracellular pH, and was Na(+) independent. Butyrate uptake was unaffected by DIDS; however, alpha-cyano-4-hydroxycinnamate and the butyrate analogs propionate and L-lactate significantly inhibited uptake. These results suggest that butyrate transport by Caco-2...

متن کامل

Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells.

Infection with the gram-negative enteropathogenic Escherichia coli (EPEC), a food-borne pathogen, represents a significant risk to human health. Whereas diarrhea is a major consequence of this infection, malnutrition also occurs especially in severe and prolonged cases, which may aggravate the health status of the infected hosts. Here we examined the effect of EPEC infection on the intestinal u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2006